
FD2Pragma

FD2Pragma ii

COLLABORATORS

TITLE :

FD2Pragma

ACTION NAME DATE SIGNATURE

WRITTEN BY October 9, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FD2Pragma iii

Contents

1 FD2Pragma 1

1.1 FD2Pragma - the programmers file generator . 1

1.2 about . 2

1.3 options . 3

1.4 examples . 4

1.5 Option explanation of all user options . 5

1.6 Options for detailed control . 6

1.7 Options for direct pragma generation . 7

1.8 includes . 8

1.9 linker libraries . 8

1.10 proto files . 9

1.11 defines used in include files . 9

1.12 local library base files . 10

1.13 Which way the header scan works . 10

1.14 Way of tag-function handling . 11

1.15 Words and phrases . 12

1.16 Known bugs and problems . 13

1.17 How self made libraries should be designed . 14

1.18 How registers of 680x0 processor are used . 15

1.19 Scripts for automatic file creation . 15

1.20 Greetings, last words and authors address . 16

FD2Pragma 1 / 17

Chapter 1

FD2Pragma

1.1 FD2Pragma - the programmers file generator

FD2Pragma - the programmers file generator

About the program
What is this program able to do

Options
What options may be used to control it

Useful example calls
Most useful calls

The important options
Main options for everyone

The advanced options
Options for more detailed control

The pragma direct options
Options for direct pragma generation

About includes
What C includes are useful and required

Some words about

Linker libraries
Generated linker library files

Proto files
Generated proto files

Include definitions
The used defines

Local library base files
C includes for local library base support

FD2Pragma 2 / 17

Header scan
The way the HEADER option works

Tag-functions
The way tag-functions are found

Important words
Explanation of used words and phrases

Bugs and Problems
Known bugs and problems

Library design
Short words how to design own libraries

Register usage
Usage of 680x0 registers

Scripts
Useful script to generate needed files

The End - Last words
Greetings, authors address ,...

Calling the program seems to be (is) very difficult, but it offers you a
large set of functions. A lot of options need a lot of abilities to turn
them on/off!

Read this documentation very carefully, because there are some notes you
may not see on fast reading, but which will help you a lot. (for example
HEADER option and "" filename)

1.2 about

This is a utility to create:
- following pragma statements for certain C compilers: amicall, libcall,

tagcall and syscall
- proto files for C compilers
- offset (LVO) files for assembler programs
- stub functions for either tag-functions or all library functions
- stub functions as assembler text
- stub functions as useable link library file
- FD files out of pragma files
- stubs for C++ compilers (SPECIAL 11, 12 and CLIB)
- the files with your own headers inserted
- files for using local pointers for shared library bases in compilers

which do not support this normally
- stub functions for Pascal compilers
- inline files for GCC

FD2Pragma 3 / 17

Therefor only the FD file telling the library informations is needed. For
SPECIAL options 10-14 and 40-42 you may additionally supply the CLIB
keyword giving FD2Pragma the prototypes file in clib directory.

Special option 50 does the reverse to normal: convert pragma to FD!

1.3 options

You get the command template with FD2Pragma ? .

FROM=FDFILE/A,SPECIAL/N,MODE/N,TO/K,CLIB/K,HEADER/K,AMICALL/K,LIBCALL/K,
AMITAGS/K,LIBTAGS/K,COMMENT/S,EXTERNC/S,PRIVATE/S,SMALLDATA/S,SORTED/S,
STORMFD/S,USESYSCALL/S:

In this position you may press <?> again and you get the following text!
Be carefull, because this text is longer than one normal high resolution
screen, so it is usefull to press a key in the middle of the text to stop
the output.

FDFILE: the FD file which should be used
SPECIAL: 1 - Aztec compiler (xxx_lib.h, MODE 2, AMICALL)

2 - DICE compiler (xxx_pragmas.h, MODE 3, LIBCALL)
3 - SAS compiler (xxx_pragmas.h, MODE 3, LIBCALL,LIBTAGS)
4 - MAXON compiler (xxx_lib.h, MODE 1, AMICALL)
5 - STORM compiler (xxx_lib.h, MODE 1, AMITAGS,AMICALL)
6 - all compilers [default]

10 - stub-functions for C - C text
11 - stub-functions for C - assembler text
12 - stub-functions for C - link library
13 - defines and link library for local library base (register call)
14 - defines and link library for local library base (stack call)
15 - stub-functions for Pascal - assembler text
16 - stub-functions for Pascal - link library
20 - assembler lvo _lvo.i file
21 - assembler lvo _lib.i file
22 - assembler lvo _lvo.i file no XDEF
23 - assembler lvo _lib.i file no XDEF
30 - proto file with pragma/..._lib.h call
31 - proto file with pragma/..._pragmas.h call
32 - proto file with pragmas/..._lib.h call
33 - proto file with pragmas/..._pragmas.h call
34 - proto file with local/..._loc.h call
35 - proto file for all compilers
40 - GCC inline file (preprocessor based)
41 - GCC inline file (old type - inline based)
42 - GCC inline file (library stubs)
50 - FD file (source is a pragma file!)

MODE: SPECIAL 1-6,AMICALL,LIBCALL,AMITAGS,LIBTAGS:
1 - _INCLUDE_PRAGMA_..._LIB_H definition method [default]
2 - _PRAGMAS_..._LIB_H definition method
3 - _PRAGMAS_..._PRAGMAS_H definition method
4 - no definition
SPECIAL 11-14:
1 - all functions, normal interface
2 - only tag-functions, tagcall interface [default]

FD2Pragma 4 / 17

3 - all functions, normal and tagcall interface
TO: the destination directory (self creation of filename) or

the destination file
CLIB: name of the prototypes file in clib directory
HEADER: inserts given file into header of created file ("" is scan)
The following four need a string as argument. This string is used to set
a #if<given string> before the set method.
AMICALL: creates amicall pragmas
LIBCALL: creates libcall pragmas
AMITAGS: creates tagcall pragmas (amicall like method (StormC++))
LIBTAGS: creates tagcall pragmas (libcall like method (SAS C))
Switches:
COMMENT: copy comments found in FD file
EXTERNC: add a #ifdef __cplusplus ... statement to pragma file
PRIVATE: includes private declared functions
SMALLDATA: generate small data link libraries or assembler text
SORTED: sort generated files by name and not by bias value
STORMFD: converts FD files of strange StormC++ format
USESYSCALL: uses syscall pragma instead of libcall SysBase

1.4 examples

Useful examples (with intuition.library):

1) FD2Pragma <fd file> TO <pragma dir>

FD2Pragma FD:intuition_lib.h TO INCLUDE:pragma/

Creates a pragma file for all C compilers and copies it to the
given directory.

2) FD2Pragma <fd file> CLIB <clib file> SPECIAL 12 TO <lib dir>

FD2Pragma FD:intuition_lib.h CLIB INCLUDE:clib/intuition_protos.h
SPECIAL 12 TO LIB:

Creates a link library holding stub functions to call tag-functions
from compilers which do not support them (MaxonC++).

3) FD2Pragma <fd file> CLIB <clib file> SPECIAL 13 MODE 3

FD2Pragma FD:intuition_lib.fd CLIB INCLUDE:clib/intuition_protos.h
SPECIAL 13 MODE 3

Creates a link library and an include file which allow you to call
library functions with local base variables in compilers which do
not support that (MaxonC++). See

below
, how to handle these files.

4) FD2Pragma <fd file> SPECIAL 34 TO <proto dir>

FD2Pragma FD:intuition_lib.h SPECIAL 34 TO INCLUDE:proto/

Creates a proto file for the local library base file include, which

FD2Pragma 5 / 17

was created in example 3 and copies it to the given directory.

5) FD2Pragma <fd file> SPECIAL 35 TO <proto dir>

FD2Pragma FD:intuition_lib.h SPECIAL 35 TO INCLUDE:proto/

Creates a proto file for all C compilers and copies it to the
given directory.

3) FD2Pragma <fd file> CLIB <clib file> SPECIAL 40

FD2Pragma FD:intuition_lib.fd CLIB INCLUDE:clib/intuition_protos.h
SPECIAL 40

Creates inline include for GCC. This is used by GCC instead of
pragma files for other compilers.

1.5 Option explanation of all user options

FDFILE is the always needed source file, which describes the library.

SPECIAL option:

(create a pragma file)
1: Creates a pragma file for the Aztec compiler, what this means you

see in the brackets above.
2: Same as 1 for DICE compiler.
3: Same as 1 for SAS compiler.
4: Same as 1 for MAXON compiler.
5: Same as 1 for STORM compiler.
6: This option creates a pragma file useable for nearly all compilers.

This is default, when no other mode is given.
NOTE: Please do always use option 6.

(link libraries and their assembler code)
10: Creates stub functions in correct C code which handle the varargs

feature. CLIB parameter is useful with this to get correct functions.
The only problem with these files is, that there is space wasted, when
not all functions are used.

11: Creates STUB functions for C compilers, which are not able to call
a library directly (result is ASM source code), accepts option CLIB to
create additional function names for C++ compilers like MaxonC++.

12: Same as 11, but the result as a link library, which can be used by the
C compiler directly.

13: Creates two files (a link library and a C include) which allows you to
use local library base variables also in compilers, which do normally
not support them (MaxonC++). Most time it is useful to set option
MODE to 3 or 1. This options needs CLIB keyword for correct results.

14: Same as 13, but parameters are passed on stack.

15: Creates STUB functions for Pascal compilers. The tagcall function

FD2Pragma 6 / 17

names are ignored, as they cannot be used with Pascal. The result is
readable assembler text. The code equals the one for C compilers, but
the args are taken from stack in reversed order.

16: same as 15, but produces link library.

(assembler LVO files)
20: Creates lvo file for an assembler.
21: Same as 20, but other name.
22: Same as 20, but there are no XDEF statements in the resulting file.
23: Same as 22, but other name.

(proto files - no prototypes)
30,31,32,33,34: Creates proto files for the C compiler (the difference is

in the name of the called file).
35: Creates proto file with calls inline file for GNU-C and

pragma/xxx_lib.h for all the others.
FD2Pragma knows the correct library base structures for some libraries.
All the other libraries get ’struct Library’ as default.

(inline files)
40: Creates new style GCC inline files.
41: Creates old style GCC inline files.
42: Same as 41, but no extern keyword before functions.

(FD file)
50: This creates a FD file! The option FDFILE has to be a pragma file

here!

1.6 Options for detailed control

MODE:
1) given with SPECIAL 1 to 6, AMITAGS, AMICALL, LIBTAGS, LIBCALL or CSTUBS:

- Defines, which #ifdef ...\n#define ... statement is used in the pragma
file. Option 1 is default.

2) given with SPECIAL 11 to 14:
- Defines, which functions should be created. Option 2 is default.

1 - all functions are taken in normal way with normal name
2 - only tag-functions are taken with tagcall method and tag name
3 - means 1 and 2 together

TO: Here you specify either the destination directory or the destination
file!

- If this argument is a directory, the internal names are used, but the
file will be in the given directory.

- If this argument is a filename (not existing or already existing), then
the resulting file has the here given name!

CLIB: Supply name of the prototypes file in clib directory. If this option
is given together with SPECIAL 11 to 12, additional functions names with
C++ names are created. FD2Pragma knows all standard parameter types defined
in exec/types.h and dos/dos.h, all structures and some more types. All
other #typedef’s bring a warning. Do not use them in prototypes files!
This parameter is needed by option SPECIAL 10, 13, 14 and 40 to 42. If it

FD2Pragma 7 / 17

is not given you get a nearly useless result.

HEADER: This option gives you the ability to specify a file, which should
be inserted after the normal headers and before the clib call of standard
headers (in LVO and ASM files too). If you give "" as filename, the
destination file (if already exists) will be scanned for an existing
header.

COMMENT: Comments which are in the FD file are copied to the pragma or LVO
file, when this option is given!

EXTERNC: This options adds an #ifdef __cplusplus ... statement to the
pragma file. This options is useful for C compilers runing in C++ mode, but
it seems, that they do not really need this statement. Only useful with
SPECIAL option 1-6, 13 and 14.

PRIVATE: Also gives you the pragmas or LVO’s of private functions.
Normally these functions should never be used!

SMALLDATA: Normal large data model references the library base as global
variable. In small data model the reference is relativ to register A4
instead. This option is useful for SPECIAL 11 and 12 only.

SORTED: This option sorts generated files by name and not by bias value.
This is only for visibility and does not change the use of the files.

STORMFD: This option allows to convert FD files in strange StormC++ format.
It’s a FD file format defining the C tag-function name directly in FD file.
These files cannot be used with other FD scanners without changes.

USESYSCALL: Instructs FD2Pragma to use the syscall pragma instead of a
libcall SysBase. This is useful only, when using a SPECIAL option with
LIBCALL or by giving LIBCALL directly and converting exec_lib.fd. I think
only SAS compiler supports this statement.

1.7 Options for direct pragma generation

The now following options are for not recommended to be used. They are
designed to be used without any SPECIAL option, but you also can give
SPECIAL and any of the following options! In this case the corresponding
settings of SPECIAL are overwritten, when they are in conflict.

AMICALL: creates amicall pragmas
--> #pragma amicall(IntuitionBase,0x294,SetGadgetAttrsA(a0,a1,a2,a3))

LIBCALL: creates libcall pragmas
--> #pragma libcall IntuitionBase SetGadgetAttrsA 294 BA9804

AMITAGS: creates tagcall pragmas (amicall like method (StormC++))
--> #pragma tagcall(IntuitionBase,0x294,SetGadgetAttrs(a0,a1,a2,a3))

LIBTAGS: creates tagcall pragmas (libcall like method (SAS C))
--> #pragma tagcall IntuitionBase SetGadgetAttrs 294 BA9804

These four functions need a string as argument. It is used to set a

FD2Pragma 8 / 17

#if<given string>

before the data of that option. So it is possible to create a file like
this:

--> FD2Pragma FDFILE xxx AMICALL " defined(__MAXON__) || defined(AZTEC_C)"
LIBCALL "def __SASC"

#if defined(__MAXON__) || defined(AZTEC_C)
/* do amicalls */

#endif
#ifdef __SASC

/* do libcalls */
#endif

If you give "" as string, then no ’#if<text>’ statement will be added.

As you see, the text is added without space after ’#if’. This gives you the
ability to use also other ’#if’ clauses, than ’#ifdef’ (e.g. #ifndef). If
needed, you have to add the space in the parameter text (" defined...").

1.8 includes

Useful include system for C compilers:

After programming a long time I arranged my includes in a way, that all my
C compilers are able to use the system includes in one directory.

I copied all Amiga system includes to one directory and added some files,
which were created with FD2Pragma. The system includes you get for example
on Amiga Developer CD.

- New directory ’pragma’ contains xxx_lib.h pragma files for every
library. These files were created with SPECIAL option 6.

- New directory ’proto’ contains xxx.h proto files which were created with
with SPECIAL option 35.

- New directory ’inline’ contains xxx.h inline files for GCC. These files
were created with SPECIAL option 40.

Directories like ’pragmas’ were deleted, when existing. Remain should only
’clib’, ’pragma’, ’proto’ and library specific directories (like ’dos’,
’exec’, ’libraries’ and ’utility’).

All the others (ANSI-C stuff, compiler specials) were copied to annother
directory. In S:User-StartUp I use ’Assign ADD’ to join the two
directories, so that the compiler may access both.

1.9 linker libraries

About created link libraries (SPECIAL Option 12-14):

The created link libraries are relatively big compared to other link

FD2Pragma 9 / 17

libraries. The size of the link library has nothing to do with the size of
the resulting program you create. The code part of my link libraries is
relatively short, but I define a lot of texts (which are NOT copied to the
created executable program). These texts are for easier identification and
every function also gets different names:

1) the normal asm name: <name> (e.g. CopyMem)
2) the normal C name: _<name> (e.g. _CopyMem)
3) the normal C++ name: <name>_<params> (e.g. CopyMem_PvPvUj)
4) when a function parameter is STRPTR, a second C++ name is created

Forms 3 and 4 occur only, when you use CLIB keyword. With SPECIAL options
13 and 14 the number of strings is twice as much. The different names give
a lot more flexibility and only make the link library bigger. These names
are only visible to the linker program. The resulting executable most time
is a lot smaller than the link library!

I think the code part of the link libraries is optimized totally. I do not
know any possible improvement to make it shorter.

1.10 proto files

FD2Pragma is able to generate different proto files, but I suggest using
only the file generated with SPECIAL option 35.

For system libraries and some others the correct base structure is used.
Other unknown basenames get "struct Library *" as default. You may change
that in the created proto files, when another structure is correct.

The proto file created with SPECIAL option 35 supports following define:

__NOLIBBASE__

When this is set before calling the proto file, the declaration of the
global library base is skipped, so that can be done in source-code. This
define is also used for GCC.

1.11 defines used in include files

The first #ifdef/#define statements of created C includes:

FD2Pragma has a set of different define names for different include files.
These names are internally to allow double-inclusion of one include files
without getting errors. Standard system includes use the same system.

The normal names are: (example intuition.library)
proto files: _PROTO_INTUITION_H
local library base files: _INCLUDE_PROTO_INTUITION_LOC_H
standard pragma files: _INCLUDE_PRAGMA_INTUITION_LIB_H
C stubs files: _INCLUDE_INTUITION_CSTUB_H
inline files for GCC _INLINE_INTUITION_H

FD2Pragma 10 / 17

Non-FD2Pragma names are:
clib files CLIB_INTUITION_PROTOS_H
other includes (path_name_extension) INTUITION_INTUITION_H

These names never should be used in other files or sources! This rule is
broken for some standard system includes, but is generally true. Compiling
may be some seconds faster, when you check these names before #include
line, but in this case the names must be standard and they are not!

Some defines allow the user to change the behaviour of the includes:

__NOLIBBASE__
This is used in proto files. See

Proto files
for more information.

NO_INLINE_STDARG
For GCC inline files a lot of defines exists, but this seems to be the most
important. It disables the creation of varags/tagcall functions.
For other inline defines check the created inline files.

1.12 local library base files

When using SPECIAL options 13 and 14 you get two files called libname_loc.h
and libname_loc.lib. The second one is a link library and should be passed
to the compiler with program settings or in makefile. The first one is a C
header file and should be used as a replacement for files in clib, pragma,
proto and pragmas directories. Use always the libname_loc.h file instead of
these files and not together with them! Do not mix them.
I suggest copying the header file into a directory called "local".

This file holds prototypes equal to the prototypes in directory clib, but
with struct Library * as first parameter and the name prefix LOC_. Together
with the prototypes there are some defines redefining the function name to
the old one and passing the library base as first parameter. These defines
allow you to use the local library bases as normal as global bases. For
tag-functions and some exceptions these defines do not work and you have
to call the LOC_ function directly and pass the library base as first
parameter.

Use always the CLIB keyword together with SPECIAL option 13 and 14 or the
resulting files are nearly useless.

1.13 Which way the header scan works

Giving the HEADER option lets FD2Pragma insert the file (you have to give
filename with HEADER option) at start of LVO/Pragma/Proto/stub file. When
you pass "" as filename, FD2Pragma scans the destination file (if already
existing) for a header and copies this header to the new file.

How is scanned:
FD2Pragma scans for a block of comment lines. So when a line starting with

FD2Pragma 11 / 17

’*’, ’;’ or ’//’ is found, this line is the first header line. The header
ends before the first line not starting this way. Additionally, when
FD2Pragma finds first a line starting with ’/*’ it scans until a line holds
’*/’. This then is the last line of header.

C and ASM files are scanned same way, so sometimes FD2Pragma may get a
wrong header.

1.14 Way of tag-function handling

The tag-functions are supported by certain comments. Note, that the
official includes from the Native Developer Update Kit do not have these
comments included. Lets look at an excerpt from the fd file
muimaster_lib.fd:

MUI_NewObjectA(class,tags)(a0,a1)

*tagcall
MUI_DisposeObject(obj)(a0)
MUI_RequestA(app,win,flags,title,gadgets,format,params)(d0,d1,d2,a0,a1,a2,a3)

*tagcall
MUI_AllocAslRequest(type,tags)(d0,a0)

*tagcalltags

The comments tell us, that MUI_NewObjectA, MUI_RequestA and
MUI_AllocAslRequest should have stub routines. The respective names are
MUI_NewObject, MUI_Request (as the comment has just the word tagcall) and
MUI_AllocAslRequestTags (as the comment has the word tags included).

Another possibility would be to write something like

SystemTagList(command,tags)(d1/d2)

*tagcall-TagList+Tags

This would create a stub routine or tagcall pragma SystemTags (dropping
the word TagList, adding the word Tags).

FD2Pragma is also able to create the names automatically. Most times this
should be enough, so you do not have to use the above mentioned method.
In case you really use the above method, I suggest using always the one
with ’+’ and ’-’ signs!

Tag-functions in standard Amiga includes differ a bit in there naming
conventions, so it is easy to find them:

normal function name tag-function name

xxxA xxx
xxxTagList xxxTags
xxxArgs xxx

Also the arguments given in the FD file may define a function as tag-
function. If the last argument equals one of the words "tags", "taglist" or
"args", then the function has a tag-function named xxxTags or xxxArgs.

The are some exceptions for this rules (some dos.library and

FD2Pragma 12 / 17

utility.library functions) which are handled automatically.

1.15 Words and phrases

clib-files, prototypes:
For Amiga C functions the prototypes needed in C compilers are stored in
a directory called clib. The files are named libname_protos.h. The CLIB
option needs the name of such a file as parameter. These files are needed
by FD2Pragma to create correct data with some options. If not given, all
variables will be of type ULONG, which seems not to be the best.

data models:
Most C compilers offer 2 different data models called large and small
data (or far and near).
Large data means all data is stored in a HUNK_DATA as a normal variable,
which is accessed by its address. One access normally needs 4 byte space
in program code and 4 byte as relocation entry.
The small data model needs less space. Here the data is stored as one
structure. At the program start the compiler adds an instruction, which
loads the structure address into register A4. In the following program the
data is always accessed related to the register A4. One access now only
needs 2 byte in program code and no relocation entry (saving 6 bytes each
access).
But this model has some problems:
- Data size may not exceed 65KB, as relativ information uses 2 bytes only.
- When program code is called from outside the program (e.g. hook code),
it is not guaranteed that A4 register still holds the base reference.
So these functions need to be __saveds (SAS-C) or call functions like
GetBaseReg() (Maxon-C).

inline system calls:
GNU-C (GCC) uses a different system to call Amiga system functions. The
needed files are stored in a directory called inline. Starting with
version 2.45 this program is able to produce inline files as well. Before
you needed to use fd2inline program. I suggest using the proto file you
can create with SPECIAL 35 instead calling inline files directly.

.lib file, link library:
A link library is a file holding functions, which are added to the final
executable at linking time. The other method are runtime or shared
libraries (#?.library) which are called in runtime and thus take no space
in the executable program.

pragma:
C allows non standard (compiler private) definitions called pragmas. Most
Amiga compilers use them to define system library calls. There exists 5
different #pragma statements, which are used by different compilers.
I suggest using the proto file you can create with SPECIAL 35 instead
calling pragma files directly.

proto file:
C compilers like SAS have a special directory called proto with files in
it calling the pragma and prototypes files. This is useful, because
different compilers store their pragma files in different directories (or
use other methods to define system calls), but all use one proto file. I

FD2Pragma 13 / 17

did not use them till now and called the pragma files directly, but this
makes it harder to switch to another compiler. So I now use proto always.

stub, stub function:
A stub functions is a function, which converts between different inter-
faces. For example C supplies function parameters on stack, but Amiga
libraries get them in registers. A stub function for that gets the
arguments on stack, copies them into the registers and call’s the Amiga
function. Newer C compilers have #pragmas to do that internally, but some
calling mechanisms are not supported by all compilers. MaxonC++ for
example does not support the tagcall.

tag-functions:
C allows to have functions getting a variable number of parameters,
everytime they are called. These varargs functions have in there
prototypes "..." at the end (e.g. printf). Amiga system libraries use this
mechanism for supplying so called tags. (See Amiga programmers
documentation for that.)
The name tag-functions is not the best, because there are also some
functions getting variable args, which are no tags (e.g. Printf), but it
expresses good, what is meant.

1.16 Known bugs and problems

- cia_lib.fd conversion fails with no ##basename error. This is wanted by
Amiga OS programmers to allow passing the library base as first argument.
In this case the C compiler function call does not work. You may add a
##basename statement to the fd file and get a working pragma file, but
this file will not work together with clib/cia_protos.h. Using option
13 or 14 instead generates a valid link file to use with clib file. The
generated text file is of no use and can be deleted.

- mathieeedoubtrans_lib.fd and mathieeedoubbas_lib.fd both use 2 registers
for one double value. FD2Pragma creates only link libraries and
definition files for these. Pragma and inline files are not created.

- Using created graphics pragma brings an error on GetOutlinePen. This is
not my fault, but an include error. Remove the line

#define GetOutlinePen(rp) GetOPen(rp)
in graphics/gfxmacros.h or turn it around to

#define GetOPen(rp) GetOutlinePen(rp)
as this works ok.

- Datatypes function RefreshDTObject is called RefreshDTObjects in proto-
types file. For generating inline files (or other types, which need CLIB
argument) this should be corrected.

- The redefines of SPECIAL 13 and 14 are illegal, when a function has same
name as a structure. (e.g. DateStamp of dos.library). You have to remove
the #define line for that function.

* Automatic created files may not always be fully correct (may happen

* seldom, but sometimes). When you find such a condition (not mentioned

* above), please contact me and when useful and possible I will include a

FD2Pragma 14 / 17

* fix in the program.

1.17 How self made libraries should be designed

As the main author of xpkmaster.library packer interface system ←↩
and include

creater for other libraries (not to forget: author of FD2Pragma) I got
some experience how library functions should be designed.

Expanding the possibilities of functions most time brings certain problems.
Some ways your reduce these problems:
- Design your functions as tag-functions. For these it is really easy to

implement new functionality. Believe me, it was a hard lesson to learn
for me. :-)

- It is always a good idea to add a "AllocStructures" function, which
allocates all structures, which are needed by your library system. Force
the user to ALWAYS use this function. Future additions to the structures
are really easy then. A "FreeStructures" function frees the stuff later.
The "AllocStructures" may get an ULONG type and tags as argument. The
tags allow to change initialisation behaviour.

- Structures should use pointers instead of byte-arrays (for texts) or
directly included other structures. This makes expanding possible, but is
a little more complicated.

- The function name should reflect your library name, for example xpkmaster
functions all start with "Xpk" and xfdmaster functions start with "xfd".

A bit how you should design names to make the work of utilities like
FD2Pragma possible:
- Tag-functions should always receive the tagitem array (struct TagItem *)

as last element.
- The normal function should end in a big ’A’, the tag-function has same

name without ’A’. Other methods are described in that document, but this
seems to be the best.

- Pointers should be in A-registers, data should be in D-registers. The
tagitem array pointer should always be in A-register.

- Try to sort your registers in a order, so that MOVEM.L can be used to get
them from stack into registers: D0,...,D7,A0,...A3(,A4,A5)
This affects autodocs, prototype files and FD files. Assembler
programmers have no problems with argument order, but it is useful for C.

- Do not use A6 and A7 registers for arguments (nearly impossible).
- Try not to use A4 and A5 register. Some C compilers store data in these

registers. There may be problems with functions using these (e.g. inline
creation has some restrictions).

- Return value should always be in D0 (and only there). It is really
complicated to access multi-return functions from C programs.

How to design FD files:
- For tag-functions the last element in FD file should be named ’tags’.
- The argument names should not be equal for different arguments, as

these names are used for certain files by FD2Pragma and other utilities.
- I you do not follow above mentioned name convention for tag-functions,

use the
tagcall comments
to define tag-function names.

FD2Pragma 15 / 17

For plain assembler programmers: Contact a experienced C programmer to get
a fine interface (or learn C :-).

1.18 How registers of 680x0 processor are used

On Amiga computers exist some conventions how the registers of 680x0
processor are used:

1) Register A7 either hold "user stack pointer" USP or "supervisor stack
"pointer" SSP. Second should not be important for normal Amiga user.
The stack is used to store variables, return addresses and for some
compiler languages (e.g. C) to store function arguments.

2) Register A6 holds a pointer to the library base, when you call an
library function. Before the library base is a jump table, which has an
entry for every library function. The function itself is reached by
jumping into the corresponding entry, which is specified by the base
value in FD file (always negativ).

3) Registers D0,D1,A0,A1 are scratch registers. This means after calling a
library function the contents of these registers is no longer valid!
The contents of all the other register are preserved.

4) Register D0 normally contains the return value of a called function.
5) Register A4 holds data base pointer when you use C compiler in small data

model. You should not use this register for argument passing.
6) Register A5 is used by C compilers to store a pointer to a field (part

of the stack) for local variables.

1.19 Scripts for automatic file creation

In directory Scripts there are some scripts, which allow you to generate
necessary files automatic.

MakeInline - Generates inline files for standard system libraries, which
can be used with GCC compiler:
Options:
FDPATH This is the path, where your system FD files are stored. The

path must end in ’:’ or ’/’.
CLIBPATH This is the path, where your system prototype files are

stored. The path must end in ’:’ or ’/’.
INLINEPATH This is the path, where created files should be stored. It

must already exists and should be empty.

MakePragma - Generates pragma files for standard system libraries, which
can be used with all compilers:
Options:
FDPATH This is the path, where your system FD files are stored. The

path must end in ’:’ or ’/’.
PRAGMAPATH This is the path, where created files should be stored. It

must already exists and should be empty.

MakeStubLib - Generates a stub link library for all standard system
libraries like amiga.lib (but with C++ name support). This library only
holds stubs an nothing of the additionally amiga.lib stuff. The result is

FD2Pragma 16 / 17

a file called stubs.lib in current directory.
You need a Join command, which supports patterns matching, like
"Aminet/util/sys/JoinReplace.lha" to get this script to work.
Options:
FDPATH This is the path, where your system FD files are stored. The

path must end in ’:’ or ’/’.
CLIBPATH This is the path, where your system prototype files are

stored. The path must end in ’:’ or ’/’.

MakeProto - Generates proto files for standard system libraries, which
can be used with all compilers:
Options:
FDPATH This is the path, where your system FD files are stored. The

path must end in ’:’ or ’/’.
PROTOPATH This is the path, where created files should be stored. It

must already exists and should be empty.

I added another Shell script called ’MakeStuff’, which allows you to
generate all the needed files for only library. This is mostly useful for
library programmers, who need to release include files for these
libraries.

It gets 3 arguments:
FDFILE The FD file, which normally is named ’xxx_lib.fd’.
CLIBFILE The prototypes file, which normally is called ’xxx_protos.h’.
DEST The destination directory, which must already exist and should be

empty.

In the destination path all needed directories are created, the FD and
prototypes file are copied and inline, lvo, pragma and proto files are
created. You only need to copy your library include files and the include
stuff is complete.

1.20 Greetings, last words and authors address

Everyone using this program should tell me in a little mail which options
he uses and if there are some problems.

This program is in the public domain. Use it as you want, but WITHOUT ANY
WARRANTY!

I want to send greetings also to the author making version 2.0 of this
utility. Although this version of FD2Pragma has not much same with version
2.0 it was a big help. The authors address is stated in the source file of
the current version!

Thanks Jochen for your great work!

Because FD2Pragma is very complex, it may be that there are some errors
(maybe also serious ones) in the code. So if you find one, please tell me!
I will also be glad if someone tells me what can be improved in the
program! I will add new options, but a GUI will never come, because this
utility is for experts, and they do not need a GUI for creating the needed
files. :-)

Please contact me:

FD2Pragma 17 / 17

* snail-mail: * e-mail: *
* Dirk Stoecker * stoecker@rcs.urz.tu-dresden.de *
* Geschwister-Scholl-Str. 10 * stoecker@amigaworld.com *
* 01877 Bischofswerda * world wide web: *
* GERMANY * http://home.pages.de/~Gremlin/ *
* phone: * pgp key: *
* GERMANY +49 (0)3594/706666 * get with finger or from WWW pages *

	FD2Pragma
	FD2Pragma - the programmers file generator
	about
	options
	examples
	Option explanation of all user options
	Options for detailed control
	Options for direct pragma generation
	includes
	linker libraries
	proto files
	defines used in include files
	local library base files
	Which way the header scan works
	Way of tag-function handling
	Words and phrases
	Known bugs and problems
	How self made libraries should be designed
	How registers of 680x0 processor are used
	Scripts for automatic file creation
	Greetings, last words and authors address

